亚盘足球

        <address id="vrjhf"></address>

      <sub id="vrjhf"><dfn id="vrjhf"><mark id="vrjhf"></mark></dfn></sub>

      <sub id="vrjhf"><dfn id="vrjhf"><mark id="vrjhf"></mark></dfn></sub>
      <pre id="vrjhf"><rp id="vrjhf"></rp></pre><address id="vrjhf"><dfn id="vrjhf"></dfn></address>

      <sub id="vrjhf"><dfn id="vrjhf"></dfn></sub>

          <sub id="vrjhf"><dfn id="vrjhf"><mark id="vrjhf"></mark></dfn></sub>

            <sub id="vrjhf"></sub>
              <thead id="vrjhf"></thead>

                <address id="vrjhf"></address>

                  <sub id="vrjhf"><var id="vrjhf"><mark id="vrjhf"></mark></var></sub><address id="vrjhf"><nobr id="vrjhf"></nobr></address>

                      <sub id="vrjhf"><dfn id="vrjhf"><ins id="vrjhf"></ins></dfn></sub>
                      <address id="vrjhf"></address>

                      <sub id="vrjhf"><var id="vrjhf"><mark id="vrjhf"></mark></var></sub>
                        <address id="vrjhf"></address>

                      <address id="vrjhf"></address>
                      Home  |  Sitemap  |  Contact Us  |  中文

                      Home > Events > Content
                      Lecture on "Uniformly Accurate Method for Highly Oscillatory Klein-Gordon Equation and Related Models"
                      DateandTime: 2019-12-13 11:19:16

                      Speaker:Xiaofei Zhao, Professor, Department of Information and Computational Sciences, Wuhan University

                      Date:December 13, 2019

                      Time:4:00-5:00 pm

                      Location:1238 Lecture Hall, Block B, Zhixin Building, Central Campus

                      Sponsor:Zhongtai Securities Institute for Financial Studies

                      Abstract:

                      In this talk, I will present the numerical methods for solving the nonlinear Klein-Gordon equation and some related models in the highly oscillatory regime. I will start with my work for the nonlinear Klein-Gordon equation in the non-relativistic limit regime, and introduce the uniformly accurate (UA) method. The UA method can allow step size independent of the small parameter. Then I will present my recent work of designing such UA scheme for the Klein-Gordon-Zakharov system in a double limit regime, which is an important model in plasma physics involving two independent small parameters.

                      Bio:

                      Prof. Zhao completed his Ph.D. from National University of Singapore in 2014. He is associate professor of School of Mathematics and Statistics at Wuhan University. His/Her main research interests include numerical methods for PDEs and computational physics. He has published more than twenty academic papers in top journals.

                      For more information, please visit:

                      http://mathfinance.sdu.edu.cn/info/1273/4212.htm

                      Edited by: Wei Zhen




                      Copyright 2011 © All rights reserved, Network Center, Shandong University    |    englishweb@sdu.edu.cn

                            <address id="vrjhf"></address>

                          <sub id="vrjhf"><dfn id="vrjhf"><mark id="vrjhf"></mark></dfn></sub>

                          <sub id="vrjhf"><dfn id="vrjhf"><mark id="vrjhf"></mark></dfn></sub>
                          <pre id="vrjhf"><rp id="vrjhf"></rp></pre><address id="vrjhf"><dfn id="vrjhf"></dfn></address>

                          <sub id="vrjhf"><dfn id="vrjhf"></dfn></sub>

                              <sub id="vrjhf"><dfn id="vrjhf"><mark id="vrjhf"></mark></dfn></sub>

                                <sub id="vrjhf"></sub>
                                  <thead id="vrjhf"></thead>

                                    <address id="vrjhf"></address>

                                      <sub id="vrjhf"><var id="vrjhf"><mark id="vrjhf"></mark></var></sub><address id="vrjhf"><nobr id="vrjhf"></nobr></address>

                                          <sub id="vrjhf"><dfn id="vrjhf"><ins id="vrjhf"></ins></dfn></sub>
                                          <address id="vrjhf"></address>

                                          <sub id="vrjhf"><var id="vrjhf"><mark id="vrjhf"></mark></var></sub>
                                            <address id="vrjhf"></address>

                                          <address id="vrjhf"></address>

                                          pt游戏平台官网

                                          押德甲联赛竞平台盘口

                                          牛彩彩票首页

                                          龙八|国际下载

                                          足球推荐论坛

                                          welcome聚福彩票登录

                                          怎样开通九州体育平台

                                          恒大官网

                                          利来国际网络w66